6 research outputs found

    Second-order Conditional Gradient Sliding

    Full text link
    Constrained second-order convex optimization algorithms are the method of choice when a high accuracy solution to a problem is needed, due to their local quadratic convergence. These algorithms require the solution of a constrained quadratic subproblem at every iteration. We present the \emph{Second-Order Conditional Gradient Sliding} (SOCGS) algorithm, which uses a projection-free algorithm to solve the constrained quadratic subproblems inexactly. When the feasible region is a polytope the algorithm converges quadratically in primal gap after a finite number of linearly convergent iterations. Once in the quadratic regime the SOCGS algorithm requires O(log(log1/ε))\mathcal{O}(\log(\log 1/\varepsilon)) first-order and Hessian oracle calls and O(log(1/ε)log(log1/ε))\mathcal{O}(\log (1/\varepsilon) \log(\log1/\varepsilon)) linear minimization oracle calls to achieve an ε\varepsilon-optimal solution. This algorithm is useful when the feasible region can only be accessed efficiently through a linear optimization oracle, and computing first-order information of the function, although possible, is costly

    Drop Electrohydrodynamics

    Full text link

    Faster Conditional Gradient Algorithms for Machine Learning

    Get PDF
    In this thesis, we focus on Frank-Wolfe (a.k.a. Conditional Gradient) algorithms, a family of iterative algorithms for convex optimization, that work under the assumption that projections onto the feasible region are prohibitive, but linear optimization problems can be efficiently solved over the feasible region. We present several algorithms that either locally or globally improve upon existing convergence guarantees. In Chapters 2-4 we focus on the case where the objective function is smooth and strongly convex and the feasible region is a polytope, and in Chapter 5 we focus on the case where the function is generalized self-concordant and the feasible region is a compact convex set.Ph.D

    Conditional Gradient Methods

    Full text link
    The purpose of this survey is to serve both as a gentle introduction and a coherent overview of state-of-the-art Frank--Wolfe algorithms, also called conditional gradient algorithms, for function minimization. These algorithms are especially useful in convex optimization when linear optimization is cheaper than projections. The selection of the material has been guided by the principle of highlighting crucial ideas as well as presenting new approaches that we believe might become important in the future, with ample citations even of old works imperative in the development of newer methods. Yet, our selection is sometimes biased, and need not reflect consensus of the research community, and we have certainly missed recent important contributions. After all the research area of Frank--Wolfe is very active, making it a moving target. We apologize sincerely in advance for any such distortions and we fully acknowledge: We stand on the shoulder of giants.Comment: 238 pages with many figures. The FrankWolfe.jl Julia package (https://github.com/ZIB-IOL/FrankWolfe.jl) providces state-of-the-art implementations of many Frank--Wolfe method
    corecore